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1 EXECUTIVE SUMMARY

This section summarizes the conclusions and recommendations of the

2004 JASON summer study commissioned by the Department of Energy

(DOE) to explore the opportunities and challenges presented by applying

advanced computational power and methodology to problems in the biolog-

ical sciences. JASON was tasked to investigate the current suite of compu-

tationally intensive problems as well as potential future endeavors. JASON

was also tasked to consider how advanced computational capability and ca-

pacity' could best be brought to bear on bioscience problems and to explore

how different computing approaches such as Grid computing, supercomput-

ing, cluster computing or custom architectures might map onto interesting

biological problems.

The context for our study is the emergence of information science as

an increasingly important component of modern biology. Major drivers for

this include the enormous impact of the human genome initiative and further

large-scale investments such as DOE's GTL initiative, the DOE Joint Ge-

nomics Institute, as well as the efforts of other federal agencies as exemplified

by the BISTI initiative of NIH. It should be noted too that the biological

community is making increasing use of computation at the Terascale level

(implying computational rates and dataset sizes on the order of Teraflops

and Petabytes, respectively) in support of both theoretical and experimental

endeavors.

Our study confirms that computation is having an important impact at

every level of the biological enterprise. It has facilitated investigation of com-

putationally intensive tasks such as the study of molecular interactions that
'Our definition of capability and capacity follows that adopted in the 2003 JASON

report "Requirements for ASCI" [36]. That report defines capability as the maximum
processing power possible that can be applied to a single job. Capacity represents the
total processing power available from all machines used to solve a particular problem.
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affect protein folding, analysis of complex biological machines, determination

of metabolic and regulatory networks, modeling of neuronal activity and ul-

timately multi-scale simulations of entire organisms. Computation has also

had a key role in the analysis of the enormous volume of data arising from

activities such as high-throughput sequencing, analysis of gene expression,

high-resolution imaging and other data-intensive endeavors. Some of these

research areas are highly advanced in their utilization of computational capa-

bility and capacity, while others will require similar capability and capacity

in the future.

JASON was asked to focus on possible opportunities and challenges in

the application of advanced computation to biology. Our findings in this

study are as follows:

Role of computation: Computation plays an increasingly important role

in modern biology at all scales. High-performance computation is crit-

ical to progress in molecular biology and biochemistry. Combinator-

ial algorithms play a key role in the study of evolutionary dynamics.

Database technology is critical to progress in bioinformatics and is par-

ticularly important to the future exchange of data among researchers.

Finally, software frameworks such as BioSpice are important tools in

the exchange of simulation models among research groups.

Requirements for capability: Capability is presently not a key limiting

factor for any of the areas that were studied. In areas of molecular biol-

ogy and biochemistry, which are inherently computationally intensive,

it is not apparent that substantial investment will accomplish much

more than an incremental improvement in our ability to simulate sys-

tems of biological relevance given the current state of algorithms. Other

areas, such as systems biology will eventually be able to utilize capa-

bility computing, but the key issue there is out lack of understanding

of more fundamental aspects, such as the details of cellular signaling

processes.
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Requirements for capacity: Our study did reveal a clear need for addi-

tional capacity. Many of the applications reviewed in this study (such

as image analysis, genome sequencing, etc.) utilize algorithms that

are essentially "embarrassingly parallel" algorithms and would profit

simply from the increased throughput that could be provided by com-

modity cluster architecture as well as possible further developments in

Grid technology.

Role of grand challenges: In order to elucidate possible applications that

would particularly benefit from deployment of enhanced computational

capability or capacity, JASON applied the notion of "grand challenges"

as an organizing principle to determine the potential benefit of signif-

icant investment in either capability or capacity as applied to a given

problem. JASON criteria for such grand challenges are as follows:

"* they must be science driven;

"* they must focus on a difficult but ultimately achievable goal;

"• there must exist promising ideas on how to surmount existing

limits;

"* one must know when the stated goal has been achieved;

"* the problem should be solvable in a time scale of roughly one

decade;

"• the successful solution must leave a clear legacy and change the

field in a significant way.

These challenges are meant to focus a field on a very difficult but imag-

inably achievable medium-term goal. Some examples are discussed be-

low in this summary as well as in the body of the report. It is plausible

(but not assured) that there exist suitable grand challenge problems (as

defined above) that will have significant impact on biology and which

require high performance capability computing.

Future challenges: For many of the areas examined in this study, signif-

icant research challenges must be overcome in order to maximize the
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potential of high-performance computation. Such challenges include

overcoming the complexity barriers in current biological modelling al-

gorithms and understanding the detailed dynamics of components of

cellular signaling networks.

JASON recommends that DOE consider four general areas in its evalu-

ation of potential future investment in high performance bio-computation:

1. Consider the use of grand challenge problems, as defined above, to

make the case for present and future investment in high performance

computing capability. While some illustrative examples have been con-

sidered in this report, such challenges should be formulated through

direct engagement with (and prioritization by) the bioscience com-

munity in areas such as (but not limited to) molecular biology and

biochemistry, computational genomics and proteomics, computational

neural systems, and systems or synthetic biology. Such grand challenge

problems can also be used as vehicles to guide investment in focused

algorithmic and architectural research, both of which are essential to

achievement of grand challenge problems.

2. Investigate further investment in capacity computing. As stated above,

a number of critical areas can benefit immediately from investments in

capacity computing, as exemplified by today's cluster technology.

3. Investigate investment in development of a data federation infrastruc-

ture. Many of the "information intensive" endeavors reviewed here

can be aided through the development and curation of datasets utiliz-

ing community adopted data standards. Such applications are ideally

suited for Grid computing.

4. Most importantly, while it is not apparent that capability computing

is, at present, a limiting factor for biology, we do not view this situ-

ation as static and, for this reason, it is important that the situation

4



be revisited in approximately three years in order to reassess the po-

tential for further investments in capability. Ideally these investments

would be guided through the delineation of grand challenge problems

as prioritized by the biological research community.

We close this executive summary with some examples of activities which

meet the criteria for grand challenges as discussed above. Past examples

of such activities are the Human Genome Initiative and the design of an

autonomous vehicle. It should be emphasized that our considerations below

are by no means exhaustive. They are simply meant to provide example

applications of a methodology that could lead to identification of such grand

challenge problems and thus to a rationale for significant investment in high-

performance capability or capacity. The possible grand challenges considered

in our study were as follows:

1. The use of molecular biophysics to describe the complete dynamics of

an important cellular structure, such as the ribosome;

2. Reconstructing the genome sequence of the common ancestor of pla-

cental mammals;

3. Detailed neural simulation of the retina;

4. The simulation of a complex cellular activity such as chemotaxis from

a systems biology perspective.

We describe briefly some of the example challenges as well as their connection

to opportunities for the application of advanced computation. Further details

can be found in the full report.

A grand challenge that has as its goal the use of molecular biophysics to

describe, for example, the dynamics of the ribosome would be to utilize our

current understanding in this area to simulate, on biologically relevant time
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scales, the dynamics of the ribosome as it executes its cellular function of

translation. The community of researchers in the area relevant to this grand

challenge can be characterized as highly computationally-savvy and fully

capable of effectively exploiting state-of-the-art capability. However, there

remain significant challenges regarding the ability of current algorithms de-

ployed on present-day massively parallel systems to yield results for time

scales and length scales of true biological relevance. For this reason, signifi-

cant investment in capability toward this type of grand challenge would, in

our view, lead to only incremental gains given our current state of knowledge

relevant to this problem. Instead, continuing investment is required in new

algorithms in computational chemistry, novel computational architectures,

and, perhaps most importantly, theoretical advances that overcome the chal-

lenges posed by the enormous range of length and time scales inherent in

such a problem.

The second grand challenge considered by JASON is directed at large

scale whole genome analysis of multiple species. The specific computational

challenge is to reconstruct an approximation to the complete genome of the

common ancestor of placental mammals, and determine the key changes that

have occurred in the genomes of the present day species since their divergence

from that common ancestor. This will require substantial computation for as-

sembly and comparison of complete or nearly complete mammalian genomic

sequences (approximately 3 billion bases each), development of more accurate

quantitative models of the molecular evolution of whole genomes, and use of

these models to optimally trace the evolutionary history of each nucleotide

subsequence in the present day mammalian genomes back to a likely original

sequence in the genome of the common placental ancestor. The computa-

tional requirements involve research in combinatorial algorithms, deployment

of advanced high-performance shared memory computation as well as capac-

ity computing in order to fill out the missing mammalian genomic data. A

focused initiative in this area (or areas similar to this) in principle fulfills the

JASON requirements for a grand challenge.
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In the area of neurobiology, JASON considered the simulation of the

retina as a potential grand challenge. Here a great deal of the fundamen-

tal functionality of the relevant cellular structures (rods, cones, bipolar and

ganglion cells) is well established. There are roughly 130 million receptors

in the retina but only 1 million optic nerve fibers, implying that the retina

performs precomputation before processing by the brain via the optic nerve.

Models for the various components have been developed and it is conceivable

that the entire combined network structure could be simulated using today's

capability platforms with acceptable processing times. Taken together, these

attributes satisfy the requirements for a grand challenge, although it should

be noted that current capability is probably sufficient for this task.

The final potential grand challenge considered in our study is the use of

contemporary systems biology to simulate complex biological systems with

mechanisms that are well-characterized experimentally. Systems biology at-

tempts to elucidate specific signal transduction pathways and genetic circuits

and then uses this information to map out the entire "circuit/wiring dia-

gram" of a cell, with the ultimate goal of providing quantitative, predictive

computational models connecting properties of molecular components to cel-

lular behaviors. An important example would be the simulation of bacterial

chemotaxis, where an enormous amount is currently understood about the

cellular "parts list" and signaling network that is used to execute cellular

locomotion. A simulation of chemotaxis that couples external stimuli to the

signaling network would indeed be a candidate for advanced computational

capability. At present, however, the utility of biological "circuits" as a de-

scriptor of the system remains a topic for further research. Indeed, some

recent experimental results indicate that a definite circuit topology is not

necessarily predictive of system function. Further investigation is required

to understand cellular signaling mechanisms before a large scale simulation

of the locomotive behavior can be attempted. For this reason the chief im-

pediment comes not from lack of adequate computing power, but from the

need to understand better the signaling mechanisms of the cell.
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2 INTRODUCTION

In this report we summarize the considerations and conclusions of the

2004 JASON summer study on high performance biocomputation. The

charge to JASON (from DOE) was to

"...explore the opportunities and challenges presented by apply-

ing advanced computational power and methodology to problems

in the biological sciences... (JASON) will investigate the current

suite of computationally intensive biological work, such as mole-

cular modeling, protein folding, and database searches, as well

as potential future endeavors (comprehensive multi-scale models,

studies of systems of high complexity...). This study will also con-

sider how advanced computing capability and capacity could best

be brought to bear on bioscience problems, and will explore how

different computing approaches (Grid techniques, supercomput-

ers, commodity cluster computing, custom architectures...) map

onto interesting biological problems."

The context for this study on high performance computation as applied

to the biological sciences originates from a number of important develop-

ments:

e Achievements such as the Human Genome Project, which has had a

profound impact both on biology and the allied areas of biocomputation

and bioinformatics, making it possible to analyze sequence data from

the entire human genome as well as the genomes of many other species.

Important algorithms have been developed as a result of this effort, and

computation has been essential in both the assimilation and analysis

of these data.
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" The DOE GTL initiative, which uses new genomic data from a vari-

ety of organisms combined with high-throughput technologies to study

proteomics, regulatory gene networks and cellular signaling pathways,

as well as more complex processes involving microbial communities.

This initiative is also currently generating a wealth of data. This data

is of intrinsic interest to biologists, but, in addition, the need to both

organize and analyze these data is a current challenge in the area of

bioinformatics.

" Terascale computation (meaning computation at the rate of 109 op-

erations per second and with storage at the level of ; 1012 bytes) has

become increasingly available and is now commonly used to enable sim-

ulations of impressive scale in all areas of computational biology. Such

levels of computation are not only available at centralized supercom-

puting facilities around the world, but are also becoming available at

the research group level through the deployment of clusters assembled

from commodity technology.

2.1 The Landscape of Computational Biology

The landscape of computational biology includes almost every level in

the hierarchy of biological function, and thus the field of computational bi-

ology is almost as vast as biology itself. This is figuratively illustrated in

Figure 2-1. Computation impacts the study of all the important components

of this hierarchy:

1. It is central to the analysis of genomic sequence data where computa-

tional algorithms are used to assemble sequence from DNA fragments.

An important example was the development of "whole genome shotgun

sequencing" [20] which made it possible for Venter and his colleagues

to rapidly obtain a rough draft of the human genome.
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Figure 2-1: A pictorial rep~resentation of the landscape of conmputationial biol-
ogy which inchudes almost every level in the hierarchy of biological function.
Imiage fromi briefing of Dr. M. Colvin.

2. Via the. processes of transcrilptioni andl translation, DNA encodes for

the set of RNAs and proteins requiredl for cellular function. Here corn-

lputation plays a role through the ongoing endeavor of annotation of

genes which direct and regulate the set of furictional macromolecules.

3. The funiction of a protein is tied not only to its aniin() acid sequence, but

also to its folded structure. Here computation is essential in attempting

to understand the relationship between sequence and fold. A variety

of miethods are applied ranging from so-called ab iiiitio) approaches us-

ing molecular dynanmics andI/or complutational quantumn chemnistry to

homnology-based ap~proaches which utilize comparisons with p~roteins

with known folds. These prolblemis continue to challenge the lbiocorn-

putation research community.

4. Once the structure of a given protein is understood, it lbecomles imipor-

taut to understand its binding specificity and its role in cellular furict ion1.
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5. At a larger scale are cellular "machines" formed from sets of proteins

which enable complex cellular activities. Simulation of these machines

via computation can provide insight into cellular behavior and its reg-

ulation.

6. The regulation of various cellular machines is controlled via complex

molecular networks. One of the central goals of the new area of "sys-

tenis biology" is to quantify and ultimately simulate these networks.

7. The next levels comprise the study of cellular organisms such as bacte-

ria and ultimately complex systems such as bacterial communities and

multicellular organisms.

To cope with this vast landscape, the JASON study described in this report

was focused on a selected set of topics where the role of computation is

viewed as increasingly important. This report cannot be viewed therefore as

exhaustive or encyclopedic. We note that an NRC report with nmuch greater

coverage of the field will be available in the near future [491. During the

period of June 28 through July 19, 2004 JASON heard briefings in tile areas

of

"* Molecular b)iophysics

"* Gemmomnics

"• Neural sinmulation

"• Systems biology

These subfields are themselves quite large and so, again, our study rel)resents

a specific subset of topics. The comp)lete list of briefers, their affiliations, and

their topics can be found in the Appendix.
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2.2 Character of Computational Resources

In assessing the type of investiuent to be niade in conmplutation in sup-

port of selected biological problenis, it is important to imatch the problemn

under consideration to the appropriate architectture. In this section we very

briefly outline the possiblle approaches. Broadly speaking we can distinguish

two major approaches to deploying computational resources: capability coin-

puting and capacity conputiing.

Capability conimputing is distinguished by the need to maintain high

arithmetic throughput as well as high memory bandwidth. Typically, this is

accomplished via a large nuniber of high performiance compute nodes linked

via a fast network. Capacity computing typically utilizes smaller configu-

rations possibly linked via higher latency networks. For somne tasks (e.g.

enilarrassingly parallel comlrltations, where little or no comnmiinication is

required), capacity computing is an effective approac-h. A recent extension

of this idea is Grid coniputing, in which computational resources are treated

much like a utility and are aggregated dynamnically as needed (sometimes

couipled to some data source or archive) to effect the desired analysis. The

requirements as regards capability or capacity comtiputing for biocomputation

vary widely and depend to a large measure on the type of algorithms that

are employed in the solution of a given problem and, in particular, on the

arithmetic rate, memnory latency and bandwidth required to implement these

algorithms efficiently.

It is usefuil at this point to review the basic approaches in support of

these re(uirements. We quote here the taxonomy of such machines as pre-

sented in the recent JASON report on the NNSA ASCI programn [36]:

Custom: Custom systems are built friom the ground-up for scientific coni-

puting. They use custom processors l)tiilt specifically for scientific
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Figure 2-2: Hardware design schematic for IBM's Blue Gene/L.

computing and have memory and I/O systems specialized for scien-

tific applications. These systems are characterized by high local mem-

ory bandwidth (typically 0.5 words/floating point operation (W/Flop),

good performance on random (gather/scatter) memory references, the

ability to tolerate memory latency by supporting a large nmiber of

outstan(hing memory references, and an interconnection network sup-

porting inter-node memnory references. Such systems typically sustain a

large fraction (50%) of peak perfornmance on many demainding app)lica-

tions. Because these systems are built in low volumes, custom systems

are expensive in terms of dollars/peak Flops. However, they are typ-

ically more cost effective than cluster-based machines in terms of dol-

lars/random memory bandwidth, and for some bandwidth-d(om iated

applications in termns of dollars/sustained Flops. An examp)le of custom

architecture is IBM's recently introduced BlueGene computer. The ar-

chitecture is illustrated in Figure 2-2. Such systems are typically viewed

as capability systems.

Commodity-Cluster: Systems are built by combnining inexpensive off-the-

shelf workstations (e.g., based on Pentium 4 Xeon processors) using

14



a third-party switch (e.g., Myrinet or Quadrics) interfaced as an I/O

device. Because they are assembled from mass-produced components,

such systems offer the lowest-cost in terms of dollars/peak Flops. How-

ever, because the inexpensive workstation processors used in these clus-

ters have lower-performance memory systems, single-node performance

on scientific applications suffers. Such machines often sustain only 0.5%

to 10% of peak FLOPS on scientific applications, even on just a single

node. The limited performance of the interconnect can further reduce

peak performance on communication-intensive applications. These sys-

tems are widely used in deploying capacity computing.

SMP-Cluster: Systems are built by combining symmetric multi-processor

(SMP) server machines with an interconnection network accessed as

an I/O device. These systems are like the commodity-cluster systems

but use more costly commercial server building blocks. A typical SMP

node connects 4-16 server microprocessors (e.g., IBM Power 4 or In-

tel Itanium2) in a locally shared-memory configuration. Such a node

has a memory system that is somewhat more capable than that of a

commodity-cluster machine, but, because it is tuned for commercial

workloads, it is not as well matched to scientific applications as cus-

tom machines. SMP clusters also tend to sustain only 0.5% to 10%

peak FLOPS on scientific applications. Because SMP servers are sig-

nificantly more expensive per processor than commodity workstations,

SMP-cluster machines are more costly (about 5x) than commodity-

cluster machines in terms of dollars/peak FLOPS. The SMP archi-

tecture is particularly well suited for algorithms with irregular mem-

ory access patterns (e.g., combinatorially based optimization methods).

Small SMP systems are commonly deployed as capacity machines, while

larger clusters are viewed as capability systems. It should be noted too

that the programming model supported via SMP clusters, that is, a

single address space, is considered the easiest to use in terms of the

transformation of serial code to parallel code.
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Hybrid: Hybrid systems are built using off-the-shelf high-end CPUs in com-

bination with a chip set and system design specifically built for scientific

computing. They are hybrids in the sense that they combine a commod-

ity processor with a custom system. Examples include Red Storm that

combines an AMD "SledgeHammer" processor with a Cray-designed

system, and the Cray T3E that combined a DEC Alpha processor

with a custom system design. A hybrid machine offers much of the

performance of a custom machine at a cost comparable to an SMP-

cluster machine. Because of the custom system design, a hybrid ma-

chine is slightly more expensive than an SMP-cluster machine in terms

of dollars/peak FLOPS. However, because it leverages an off-the-shelf

processor, a hybrid system is usually the most cost effective in terms

of dollars/random memory band width and for many applications in

terms of dollars/sustained FLOPS. Due to the use of custom network-

ing technology and other custom features such systems are typically

viewed as being capability systems.

2.3 Grand challenges

From the discussion in Section 2.1 it is not difficult to make a case for

the importance of computation. However, our charge focused on the identifi-

cation of specific opportunities where a significant investment of resources in

computational capability or capacity could lead to significant progress. When

faced with the evaluation of a scientific program and its future in this con-

text, JASON sometimes turns to the notion of a "Grand Challenge". These

challenges are meant to focus a field on a very difficult but imaginably achiev-

able medium-term (ten-year) goal. Via these focus areas, the community can

achieve consensus on how to surmount currently limiting technological issues

and can bring to bear sufficient large-scale resources to overcome the hurdles.

Examples of what may be viewed as successful grand challenges are the Hu-
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man Genome Project, the landing of a man on the moon and, although, not

yet accomplished, the successful navigation of an autonomous vehicle in the

Mojave desert. Examples of what, in our view, are failed grand challenges

include the "War on Cancer" (circa 1970) and the "Decade of the Brain"

in which an NIH report in 1990 argued that neurobiological research was

poised for a breakthrough, leading to the prevention, cure or alleviation of

neurological disorders affecting vast numbers of people.

With the above examples in mind, JASON put forth a set of criteria to

assess the appropriateness of a grand challenge for which a significant, invest-

ment in high-performance computation (HPC) is called for. In the following

sections of this report we then apply these criteria to various proposed grand

challenges to assess the potential impact of HPC as applied to that area. It

should be emphasized that our considerations below are by no means exhaus-

tive. Instead, they are simply meant to provide example applications of a

methodology that could lead to identification of such grand challenge prob-

lems and thus to a rationale for significant investment in high-performance

capability or capacity.

The JASON criteria for grand challenges are

"* A one-decade time scale: Everything changes much too quickly for a

multi-decadal challenge to be meaningful.

"* Grand challenges cannot be open-ended: It is not a grand challenge

to "understand the brain", because it is never quite clear when one is

done. It is a grand challenge to create an autonomous vehicle that can

navigate a course that is unknown in advance without crashing.

" One must be able to see one's way, albeit dimly, to a solution. When the

Human Genome Project was initiated, it was fairly clear that it was,

in principle, doable. The major issue involved improving sequencing

throughput and using computation (with appropriate fast algorithms)

to facilitate the assembly of sequence reads. While underscoring the
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tremendous importance of these advances, they are not akin to true

scientific breakthroughs. Thus, one could not have created a grand

challenge to understand the genetic basis of specific diseases in 1950

before the discovery of the genetic code. This is independent of how

much data one might gather on inheritance patterns, etc. With some

important exceptions, data cannot, in general, be back-propagated to

a predictive "microscopic" model. One must therefore view with some

caution the notion that we will enter a data-driven era when scientific

hypotheses and model building will become pass6.

e Grand challenges must be expected to leave an important legacy. While

we sometimes trivialize the space program with jokes about drinking

Tang, the space program did lead to many important technological

advances. This goes without saying for the human genome project.

This criteria attempts to discriminate against one-time stunts.

The remaining sections of this report provide brief overviews of the

role of computation in the four areas listed in section 2.3. At the end of

each section we consider possible grand challenges. Where a grand challenge

seems feasible we describe briefly the level of investment of resources that

would be required in order to facilitate further progress. Where we feel the

criteria of a grand challenge are not satisfied we attempt to identify the type

of investment (e.g. better data, faster algorithms, etc.) that would enable

further progress.

18



3 MOLECULAR BIOPHYSICS

Molecular biophysics is the study of the fundamental molecular con-

stituents of biological systems (proteins, nuclei acids and specific lipids) and

their interaction with either small molecules or each other or both. These

constituents and their interactions are at the base of biological functionality,

including metabolism, gene expression, cell-cell communication and environ-

mental sensing, and mechanical/chemical response. Reasons for studying

molecular biophysics include:

1. The design of new drugs, enabled by a quantitatively predictive ca-

pability in the area of ligand-binding and concomitant conformational

dynamics.

2. The design and proper interpretation of more powerful experimental

techniques. We briefly discuss in this section the role of computation

in image analysis for biomolecular structure, but this is only one aspect

of this issue2.

3. A better understanding of the components involved in biological net-

works. Current thinking in the area of systems biology posits that one

can think of processes such as genetic regulatory networks as akin to

electrical circuits 3. The goal here is to find the large scale behavior of

these networks. But recent experiments have provided evidence that

this claim, that we know enough of the constituents and their interac-

tions to proceed to network modeling, may be somewhat premature.
2 A notable development discussed during our briefings was a recent case where quantum

chemistry calculations helped in the design of a green fluorescent protein (GFP) fusion,
in which attaching GFP to a functional protein and carefully arranging the interaction
led to the capability of detecting changes in the conformational state of the protein -
these probes will offer a new window on intra-cellular signaling, as information is often
transmitted by specific changes (such a phosphorylation) in proteins, not merely by their
presence or absence.

3This metaphor is responsible for attempts to create programs such as BioSpice, mod-
eled after the SPICE program for electrical circuits
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Issues such as the role of stochasticity, the use of spatial localization

to prevent cross-talk, the context-dependent logic of transcripts factors

etc. must be addressed via a collaboration of molecular biophysics and

systems biology. Further discussion of these issues can be found in

Section 6.

4. Development of insight into the unique challenges and opportunities

faced by machines at the nano-scale. As we endeavor to understand

how biomolecular complexes do the things they do, undeterred by the

noisy world in which they live, we will advance our ability to design

artificial nano-machines for a variety of purposes.

In the following, we will briefly survey three particular research areas

in which computation is a key component. These are imaging, protein fold-

ing, and biomolecular machines. We will see specific instantiations of the

aforementioned general picture. We then consider a possible grand challenge

related to this area - the simulation of the ribosome.

3.1 Imaging of Biomolecular Structure

One of the areas where computational approaches are having a large

effect is in the development of more powerful imaging techniques. We heard

from W. Chiu (Baylor College of Medicine) about the specific example of

the imaging of viral particles by electron microscopy. Essentially, a large

number of different images (i.e. from different viewing perspectives) can be

merged together to create a high resolution product. To get some idea of

the needed computation, we focus on a 6.8 A structure of the rice dwarf

virus. This required assembling 10,000 images and a total computation time

of - 1500 hours on a 30 CPU Athlon (1.5 GHz) cluster (a very conventional

cluster from the viewpoint of HPC). This computation is data-intensive but

has modest memory requirements (2 GByte RAM per node is sufficient).
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Figure 3-3: An image of the outer capsid of the Rice Dwarf Virus obtained
using cryo-electron microscopy. The image originates from a briefing of Dr.
Wah Chin.

A typical result is shown in Figure 3-3. Remarkably, the accuracy is high
enough that one can begin to detect the secondary structure of the viral coat

p)roteins. This is facilitated by a software package develop)ed by the Chiu
group called Helix-Finder, with results shown in Figure 3-4. The results have
been validated through independent crystallography of the capsid proteins.

One of the interesting questions one can ask relates to how the computing

resource needs scale as one moves to higher resolution. Dr. Chin p)rovide•t us

with estimates that 4A resolution woukl require 100,000 images and about

10,000 hours on their existing small cluster. If one imagines a cluster which is

ten times more powerful, the image reconstruction will require a year's worth

of computation as this is an embarrassingly parallel task. This is enough to

put us (marginally) in the HPC ball park, but there is no threshold here
the problem can be done almost equally well on a comnlodity cluster, or

potentially via the Grid, and this will lead to only a modest degradation in
the resolution achievable by a truly high-end machine. Because the type of

image reconstruction as described by Dr. Chiu is an embarrassingly parallel
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Figure 3-4: Identification of helical structure in the outer coat proteins of

the rice dwarf virus. Image from briefing of Dr. Wali Chin (Baylor College

of Medicine.

computation, one cain make a cogent argument for deployment of calpacity

computing and, indeed, the development of on-deniand network computing, a

signature feature of Grid computing, would be a highly appropriate approach

in this area.

Inaging in biological systems is a field which certainly transcends the

molecular scale; its greatest challenges are at larger scales where the con-

certed action of many components combine to create function. These topics

are not part of molecular biophysics and so are not discussel here. For soiie

more information one can consult a recent JASON report [39] on this topic.

3.2 Large-scale molecular-based simulations in biology

WVe next assess several aspects of niolecular-based simulation that are relevant

to high perfornma.nce computation. There has been major progress in niol(-
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cular scale simulations in biology (i.e., including biophysics, biochenmistry,

and molecular biology) since the first molecular dynamics (MD) calculations

from the early 1970's. The field has evolved significantly with advances in

theory, algorithmis, and computational capability/capacity.

Simulations include a broadl range of energetic calculations that include

MD, Monte Carlo methods (both classical and quantum), atomic/electronic

structure dynamics optimization, and other statistical approaches. In MD,

the trajectories of the component particles are calculated by integrating the

classical equations of motion. The simplest renditions are based on classical

force fields that use parameters (e.g., force constants) derived froni fitting

to experimental data or to theoretical (quantum mwehanical) calculations.

These can be suppleniented by explicit quantuni mechanical calculations of

critical components of the system [45, 14, 26]. These calculations are partic-

ularly important for modeling chemical reactions (i.e., making and breaking

bonds). At the other end of the scale are continuum approaches that ignore

the existence of molecules. In fact, it has been fashionable to use hybrid ap-

l)romhlies involving quantun minichanical, classical molecular, and continuum
imethods to model the largest systems. In addition to the intrinsic accu-

racy problenis with each of the component parts (discussed below), there are

important issues on how to appropriately describe and treat the interfaces

between the quantuni, classical, and continuum reginies [40].

It is a truism from physics that a full quantum mechanical treatment of

a biological system would yield all necessary information required to explain

its function if such a treatment were tractable [10]. The reality of course, is

that existing methods for the quantum mechanical treatiient of even a small

piece of the problem (e.g. the active site of an enzyme) are still approximate

and the accuracy of those methods needs to be carefully examined in the

context of the problem that one is trying to solve. Some feel for the size

of the problem can be obtained from Figure 3-5 where typical simulation

approaches for molecular biophysics are put in context. As can be seen from

the Figure, the applicability of a given method is linked to the number of
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Figure 3-5: A plot of typical siniulation methodologies for molecular bio-

physics plotted vs number of atoms and the relevant time scale. Figure from

presentation of Dr. M. Colvin.

atoms in the system utrder consideration as well as the required tine scale for

the sinmlation. The larger the numlber of atoms or the longer is the required

simulation timne, the funrther one moves away front "ab initio" methods.

Quantuni approaches break down into either so-called q(uantumn chemi-

cal (orbital) or density functional methods. The quantum chelnical methods

have intrinsic limitations in terms of the niuiber of electrons that can be siml-

ulated and the trade-off in basis set size versus systemn size imlpacts accuracy.

The inost accurate methods (including configiiration interaction or coutpled

cluster approaches) typically scale as N' to N 7 , where N is the nuimnber of

electrons in the system. As a result of these limitations, there has been in-

creasing interest in the use of density functional methods [23, 40], which have

been used extensively in the condenset-matter physics community because of

their reasonable accuracy in reproducing the grounid-state p)roperties of inany

semiconductors and nmetals. Despite the name "first-principles", there is an

arbitrariness in the choice of density functionals (e.g. to model exchange-
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correlations) and there has been extensive effort to extend the local density

approximation (e.g., with gradient corrections) or using other alternatives

such as Gaussian Wave bases (e.g. [16]). While these extensions may more

accurately represent the physics of the problem, the extensions can result

in poorer agreement between theory and experiment. Following the Born-

Oppenheimer approximation, the dynamics is treated separately from the

forces (i.e. using the Hellman-Feynman theorem) and usually in the quasi-

harmonic approximation.

The advent of first-principles MD has been an important breakthrough [7]

and is being applied to a range of chemical and even biological problems [40].

Here the electronic structure is calculated on the fly as the nuclei move (clas-

sically), with the coefficients of the single-particle wave functions treated as

fictitious zero-mass particles in the Lagrangian. The much larger size of the

simulation relative to the classical case results in limitations to the basis set

convergence, k-point sampling, choice of pseudopotentials, and system size.

Moreover, these techniques are still based on density functional approxima-

tions, so the problems discussed above apply here as well. Because of this,

the accuracy needs to be carefully examined. There are a number of prob-

lems to be surmounted before these methods can be fully implemented for

biological systems (cf. for example [26, 3]). A full ab initio calculation of a

small protein has been reported (1PNH, a scorpion toxin with 31 residues

and 500 atoms; [3]). Hybrid classical and first-principles MD calculations

have also been applied to heme [35].

One can step back from the problem of treating biomolecules, by con-

sidering the problem of accurately describing and calculating the most abun-

dant molecules in biological systems: water. After years of effort, the proper

treatment of water in condensed phase is still challenging. The most ac-

curate representations of the physical properties of the molecule (i.e., with

the proper polarizability) in condensed phase and in contact with solutes is

often too time consuming to compute, so simple models are used. Indeed,

the full first-principles approaches still fail to reproduce the important phys-
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ical and chemical properties of bulk H20 [17]. Studies of aqueous interface

phenomena with these techniques are really only beginning [8].

In principle, the most accurate methods would be those that take the

full quantum mechanical problem, treating the electrons and atoms on the

same quantum mechanical footing. Such methods are statistical (e.g., various

formulations of quantum Monte Carlo) or use path integral formulations

for the nuclei [15]. In quantum Monte Carlo, the problem scales as N3 .

Because of this, the treatment of heavy atoms (beyond H or He) has generally

been problematic. But there are also fundamental problems. In the case of

quantum Monte Carlo there is the fermion sign problem. Linear scaling

methods have been developed so that systems of up to 1000 electrons can be

treated (e.g., Fullerene [48]). These methods have not been applied directly

to biomolecular systems to our knowledge.

Several additional points need to be made. The first is that biologi-

cal function at the molecular level spans a broad range of time scales, from

femtosecond scale electronic motion to milliseconds if not seconds. Indepen-

dently of the intrinsic accuracy of the calculations (from the standpoint of

energetics), the time-scale problem is beyond conventional molecular-based

simulations. On the other hand, stochastic methods can bridge the gap be-

tween some time scales (i.e., molecular vibrations, reaction trajectories and

large scale macromolecular motion [50, 13, 38]). This is also important for the

protein folding problem [44]. Finally, the above discussion concentrates on

the use of simulations for advancing our understanding of biological function

from the standpoint of theory, essentially independent of experiment. On the

other hand, there is a growing need for large-scale molecular-based simula-

tions as an integral part of the analysis of experimental data. Classical MD

and Monte Carlo (including reverse Monte Carlo) simulations can be used

in interpreting data from diffraction, NMR, and other kinds of spectroscopy

experiments [3]. These examples include chemical dynamics experiments

carried out with sub-picosecond synchrotron x-ray sources. The needs here

for high-performance computing appear to be significant. The computational
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chemistry community, however, has been very successful in articulating these

requirements and will be able to make a cogent case for future resources re-

quired to support this work. The above discussion also underscores once

again the need for basic research that can then lead to future consideration

of larger systems of biological interest.

In order to provide some context for the scale of applications that one

envisions, we close this section with a brief discussion of the computational

resources required for a very basic protein folding calculation using a sim-

ple and conventional classical MD approach. In order to try to capture the

interatomic interactions, use is typically made of various potentials with ad-

justable parameters that are used to fit data acquired from more accurate

calculations on smaller systems. A typical set of such potentials (quoted

from [2]) is expressed below:

UTotal - Ustretch + UBend + UTorsion + ULJ + UCouob where

Ustretch = K (ij - ri7qui ) 2

bonds(ij)

UTorszoii E E Vijicn [1 + cos(n~ijk1 'Yijkl)l (3-1)
torsions(ij kl) n=1,2,....

ULJ = rl_ Bij
nonbonded(ij),i<j) U %6

UCoulomb = E ql,
nonbonded(ij) crij

The total interaction is comprised of bonded and nonbonded interactions.

The bonded interactions account for bending, stretch and torsion in the pro-

tein structure. Nonbonded interactions account for the electrostatic as well

as Lennard-Jones interactions. Equation 3-1 represents the forces typically

taken into account in MD simulations of protein and water systems. The

accuracy of this expression is directly related to how the choice of the pa-

rameters (for example interaction strengths such as Kij) is made. It is here

that more accurate quantum chemical approaches might be used to create

a valid "force field". The MD approach simply computes all the forces on

all atoms of the protein (and solvent) and then adjusts the positions of the
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atoms in response to these forces. However, several aspects of this calculation

are extremely challenging. They are summarized in the table below:

Physical time for simulation 10' seconds

Typical time step size 10-15 seconds

Typical number of MD steps 1011 steps

Atoms in a typical protein and water simulation 32000 atoms

Approximate number of interactions in force calculation 10' interactions

Machine instructions per force calculation 1000 instructions

Total number of machine instructions 1023 instructions

The estimates come from [2]. As shown in the table, a typical desired sim-

ulation time might be on the order of 10-100 microseconds although it is

known that folding timescales can be on the order of milliseconds or longer.

The second entry illustrates one of the most severe challenges: in the absence

of any implicit time integration approach the integration must capture the

vibrational time scales of the system which are in the femtosecond range.

The number of interactions required in the force calculation is derived from

the most simple estimate wherein all O(N 2) interactions are computed for

a system of size N. This can be in principle be reduced through the use

of methods based on multipole expansions; this entails significant program-

ming complexity when one contemplates implementing such algorithms on

parallel architectures and improvement over the simple approach will not be

seen until N is sufficiently large. As a result the estimate provided above is

probably not far off. In total, such folding calculations require 1023 opera-

tions to compute one trajectory. For a computer capable of a Petaflop such

a calculation will still require 0(108) seconds or roughly three years.

A computer capable of arithmetic rates of a Petafiop is today only fea-

sible through the use of massive parallelism. It is envisioned that computers

capable of peak speeds of roughly a Petaflop will be available in the next

few years. An example is the recently announced BlueGene/L machine from

IBM which represents today the ultimate capability platform. The largest
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Figure 3-6: Scaling for the molecular dynamics code NAMD on the ASCI
Red massively parallel computer.

configuration of this machine is 64000 processors each capable of roughly 3

Gflops. Thus, present-day configurations of BlueGene are capable of peak

spee(ls of roughly .2 Petaflop and it is anticipated that through imp)rove-

ments in processor technology it will be possible to achieve peak speeds of a

Petaflop in the very near future.

However, as discussed in section 2.2, it is difficult to achieve the ideal

peak speed on a single processor. This is typically because of the inability to

keep the processor's arithmetic units busy every clock cycle. Even without

massive parallelism processors will p)erfornm at perhaps 0.5 to 10% of their

peak capabilities. Further latency results when one factors in the need to

comnuicate across the computer network. Commiunication is typically quite

a bit slower than comp)utation even in capability systems and so for some

algorithms there can l)e issues of scalability as the number of processors are

increased. Computations such as those required for protein folding exhibit

significant nonlocality in terms of mniemory access and so the development of

scalable algorithins is crucial. A example of this (based on rather old data)
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is shown in Figure 3-6. The figure shows the number of time steps that

can be completed in one second of wall ('lock time using a modern protein

simulation code NAMD. The data come from the ASCI Red platform which

is now almost 10 years old. Nevertheless the trends are reflective of what can

be expected to happen on more modern platforms. It can be seen that as

the number of atoms is held fixed and the number of processors increase(l.

the computational rate eventually saturates implying the existence of a point

of diminishing returns. The performance can be improved by increasing the

number of atoms per processor or by re(dicing network latency.

To conclude, it is seen that the computational requirements for highly

accurate molecular biophysics comiutations are significant. The challenge

of long time integration is particularly severe. We discuss in more detail the

particular problem of protein folding in the next section.

3.3 Protein Folding

One of the most comiputation-limited problemls currently being vigorously

pursued is that of protein folding. Actually, there are two separate folding

problems that should not always be lumped together. The first is the de-

ternmnation of protein structure from the underlying aniino acid sequence;

there is a corresponding nucleic acid problem of determining the structure

of single-stranded RNA from nucleotide sequence. This problem has its final

goal an atomic level picture of the folded-state conformation but does not

necessarily care about the folding kinetics. The second problem is the tine

evolution of protein folding, deternmining the exact set of trajectories that en-

able the system to fold from an initially unfolded ensemble. Here one cares

about the folding kinetics and the nature of the transition states. This infor-

mation can be crucial, as in for example the problem of protein aggregation

disease due to the clumping together of proteins that have gotten trapped in

nnisfolded non-native states.
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The "holy grail" in this field is being able to directly simulate the folding

process of a typically-sized single domain protein (say 100 residues) starting

from a random initial state. This would presunal)ly be (lone by classical

MD with a well-established force field and in the presence of explicit water

molecules (i.e. solvation). This simulation would of course directly address

the structure problem and would demonstrate at least one kinetic trajectory;

presumably multiple runs would be nee•lded to determine the full range of

possible kinetic pathways. A first step towards the direct realization of this

capability was made by Duan and Kollman [11], who simulated the folding

of the 36 residue Villin head piece (see Figure 3-7) for one microsecond. The

Villin head piece subdornain that was simulated is one of the most rapidly

folding proteins and this calculation represented a new level of capability

in this area. To give some idea of the resources required for these studies,

their computation ran for several months on a 256 node cluster at the Pitts-

burgh Supercomputer Center. Despite the impressive scale of this type of

computations there is, in our opinion, no compelling argument that brute

force calculations enabled by a state-of-the-art capability machine are really

going to break open this problem. It is not as if there is a well-defined force

field that will give us the correct answer every time if only we had enough

cycles. Such an approach is valid in some other fields (e.g. computational

hydrodynamics, lattice quantum chroniodynamics, etc.) but appears wholly

inappropriate here as pointed out earlier in Section 3.2. Instead, the refine-

ment of force fields must go hand in hand with a broad spectrum of computa-

tional experiments ais discussed in the previous section. Furthermore, there

is no one unique protein of interest and it is quite likely that, models that

suffice for one protein of one class will need to be modified when faced with

a different structural motif this has been seen when standard programs

such as CHARMM anrd AMBER, usually calibrated on proteins that have

significant at-helix secondary structure, are used for mostly f3-sheet struc-

tures. The fact that one model will not do for all proteins is a consequence

of assuming that the problem can be addressed by classical MD with few-

body potentials. This is only approximately true as previously discussed in
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Figure 3-7: Representations of various stages of folding of the 36 residue

Villin head piece. (A) represents the unfolded state; (B) a partially folded

state at 980 nisee and (C) a native structure. (E) is a representative structure
of the most stable cluster. (D) is an overlap of the native (red) and the most

stable cluster (blue) structures indicating the level of correlation achieved

between the simulation and a native fold. (Figure from [11]).

section 3.2; the real interactions are quantumn mechanical and many-body in

nature, and hence empirical adjustments imust be made on a case-by-case

basis. Of course, the idea of going beyond classical MD to a more "realistic"

ab initio treatment (using density functional theory, for example) would ap-

pear to be totally out of the question using present computational techuiques

given the considerations discussed in section 3.2

Even in the absence of a direct path to the answer, the molecular bio-

physics conmmunity continues to make excellent progress by using a variety of

approximiations, simplifying assumptions and, of primary concern here, con-

putational resources and paradtignis. It is not useful to give a comprehensive

review, but it is worth presenting some of the highlights of these alternate
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Figure 3-8: A free energy plot of a 16 residue segment of some specific protein;
the axes refer to distance away from an alpha helix (y-axis) versus a beta
hairpin (x-axis), and blue is low free energy (i.e. a probable configuration).
Here, the number of atoms being sinnmlated is 8569 and the calculation is
done using 42 replicas.

approaches:

Simplified models: If one retreats from all-atom sinmulations, one can get

longer runs of the folding timne-course. One can elinminate the water
molecules (going to "implicit solvent" models), eliniinate the side chains

(so-called C' models) and even restrict the overall conformational space

by putting the system on a lattice. These have been used to great

effect to study folding kinetics. These simnulations run quite effectively
on existing clusters which have become the standard resource for the

coninunity.

Thermodynamics: If one is willing to give up on folding kinetics and

merely study the thermodynamnics of the system, advanced saInpling

techniques enable rapid exploration of the conformnational space. For

examlple, the replica exchange niethod uses a set of replicas that evolve

at differing temnperatures. Every so often, configurations are swapped

between replicas, preventing the low temperature system of interest

froim getting trapped for long periods of time. Because of linited com-
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niunication l)etween the replicas, this algorithmn is close to being eii-

barrassingly parallel. As an example, we show in Figure 3-8 the free

energy plot of a 16 residue segnient of sonie specific protein; the axes

refer to distance away from an a-helix (y-axis) versus a Il-hairpin (x-

axis), and blue is low free energy (i.e. a t)rol)able configuration). Here,

the nuimber of atoms being sinmulated is 8569 and the calculation is

(lone using 42 replicas. These data are base•t on a 6 nanosecond MD

simulation, which took 96 hours on the SDSC Teragrid machine with

168 CPU's.

Folded State: If one is interested only in the native state, one can dis-

pense with kinetics altogether and focus on finding the minimal energy
structures. This can be tacklet by a whole set of possible optimization

algorithms. Many of the practitioners of these techniques comipete in

tihe CASP coiipetition to predi(ct structures which have been nieasured

but as yet riot-released. As we heard froii one of our briefers, Peter

Wolynes, progress is being made on structure prediction by "folding in"

theoretical ideas such as the relative sinplicity of the energy landscape

for natural proteins.

Grid-based methods Several groups are exploring the distributed coin-

puting paradigm for perforining folding conipiitations. One interesting

idea is due to Pande [331 who noted that for simiple two-state fold-

ing kinetics, the folding is a Poisson process (i.e. has an exponeitial
waiting time distribution). This means that one can run thousands

of totally independent folding simuilations and that a small percentage

(-" t/troldiig) will fold after a smiall tinie t. They have demonstrated

how this siniplifying assumption can be used to harness unused comi-

putational capacity on the Internet to actually get folding paths. Other

groups are also beginning to explore distril)uted comnlputer applications

(see, for examiple, the work of the Brooks group [6] at Scripps Research

on structure determiination for the CASP6 comlpetition). These appli-

cation are being facilitated by the increasing availability of Grid iid-
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dleware (cf., for example the Berkeley Open Infrastructure for Network

Computing project [1]).

We should mention in passing that most of the work to date has focused

oil soluble proteins. An additional layer of complexity occurs when proteins

interact directly with membranes, such as for example when the parts of

the protein repeatedly traverse the lipid bilayer. Additional attention is

being paid to this topic, but progress remains sporadic, especially since the

structural data upon which the rest of the folding field is directly reliant, is

much harder to come by.

In summary, the protein folding problem will use up all the cycles it can

and will do so with good effect. Progress is being made by using a whole suite

of computational platforms together with theoretical ideas which motivate

simplifying assumptions and thereby reduce the raw power needed. This mix

appears to us to be the most promising direction; a single dedicated facility

for protein folding (as was advertised initially for Blue Gene) will be useful

but would not on its own break the field open. We elaborate on this issue

further in the next section.

3.4 A Potential Grand Challenge - The Digital Ribo-
some

The understanding of biomolecular structure, while clearly important in

its own right, is but a step towards the more essential area of biomolecular

function, that is, how the dynamic three dimensional structure of biomole-

cules and biomolecular complexes enable critical steps in the life-cycle of or-

ganisms to be carried out. The simplest of these possibilities is the catalyzing

of a specific reaction by a single component enzyme; other "simple" functions

include the capture of a photon by a light-sensitive pigment embedded in a
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protein photoreceptor. More complex possibilities include the transduction of

chemical energy into mechanical work, the transfer of molecules across mem-

branes, and the transfer of information via signaling cascades (often with the

use of scaffolds for spatial organization of the reactions). At the high end

of complexity one has incredibly intricate multi-component machines which

undergo large scale conformational motions as they undertake tasks. A clas-

sic example is the ribosome, consisting of roughly 50 proteins and associated

RNA molecules. Its job, of course, is to translate the sequence of messenger

RNA into the amino acid sequence of a manufactured protein.

Typically, studies of biomolecular function of the underlying structure

are advanced via X-ray crystallography, cryo-electron microscopy or NMR.

Often, one can obtain several static pictures of the complex, perhaps with

bound versus unbound ligand for example. The challenge is then to under-

stand the sequence of events comprising the actual functioning of the ma-

chine. The complexity arises from the need to keep track of a huge number

of atoms (millions, for the ribosome) and from the need to do some sort of

quantum mechanical treatment of any of the actual chemical reactions taking

place.

Let us again focus on the quantum chemistry aspects of the problem

(as discussed in Section 3.2). It is clear that one cannot hope to do justice

to any of the quantum aspects of the problem for more than a tiny fraction

of the biomolecular complex, and for more than a tiny fraction of the time

involved an entire functional cycle. This part of the problem has to then be

coupled to the rest of the dynamics in space and time which presumably are

being treated by classical MD simulations. This task falls under the general

heading of "multi-scale computation" where part of the problem needs to be

done at a very much finer resolution than others. Our impression is that there

remains much room for algorithmic improvement for this interfacing task.

We heard about progress on quantum algorithms from various briefers. This

community is rather mature and is making steady progress, but again, it did

not appear from our briefings that deployment of HPC would at this point

36



create a "sea-change" in our current understanding of biological function.

Instead, we see a mix of platforms being applied in valuable ways to various

problems with achievement of incremental progress.

The biggest problem in this area appears to be the "serial time" bot-

tleneck. HPC can, in principle, allow us to consider bigger systems although
there are issues of scalability, but cannot directly address the difficulty of

integrating longer in time if one uses conventional "synchronous" integration

methods. The mismatch in time scale between the fundamental step in a dy-

naniical simulation (on the order of femtoseconds) and the tinie-scale of the

desired functional motions (milliseconds or longer) is depressingly large and

will remain the biggest problerm for the foreseeable future. Of course, there

are ways to make progress. One familiar trick is driving the system so hard

that the dynamics speeds up; the extent to which these artificial motions are
similar to the ones of interest needs to be carefully investigated on a case by
case basis. Finding some analytic method which allows for integrating out

rapid degrees of freedom is obviously something to aim at, but again any

proposed method should lbe carefully evaluated.

Within the context of biological machines, we consider the notion of the

"Digital Ribosonie" as a possible grand challenge in computational biology.
Exactly how uniquely important the ribosome is as compared to other crit-

ical biological machines is somewhat subjective, but it is fair to say that it
does represent a first-order intellectual challenge for the biology community.

Namely, one wants to understand how the structure allows for the function,

what is the purpose of all the layers of complexity, which pieces are the
most constrained (and hence have the hardest time changing from species to
species over evolutionary time) and, of course how did the ribosome (with

all the attendant implications for cell biology) come to be. This problem
has come to the fore mostly because of the remarkable recent successes in

imaging of ribosomal structure (see for example Figure 3-9). The existence of
structural information as well as the long history of using ribosomal RNA to

track evolution seems to allow us to converge to a set of coherent tasks that
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Figure 3-9: Views of the three dimensional structure of the ribosonie includ-

ing three bound tRNA's. (a) and (b) Two views of the ribosome bound to the

three tRNAs. (c) The isolated 50S subunit bound to tRNAs - peptidyl trans-
fer center is circled (d) Isolated 30S subunit bound to tRNAs- the decoding
center is circled. The figure above is taken from [46]

would enable us to formulate this challenge. This would have a high payoff,

one of our challenge criteria, and would actually energize the community.

But, is it doable?

Our basic conclusion is that, at present, the serial bottlenleck probleml

as well as our lack of fully understanding how to create classical force fields

(as well as understanding when one needs to go to full ab initio methods)

makes the digital ribosome project premature. We do not see a path to

full simulation capability and, although there are promising approximate

methods based on a sort of normal mode analysis, we do not yet understand

how to do reliable dynamics without such a capability. This is only a weak
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conclusion, however, and we think that this issue should perhaps be put to the

molecular biophysics community in a more direct fashion. Further, it is our

opinion that the total decoupling of molecular biophysics calculations from

evolutionary information is possibly holding back progress. After all, one can

get some ideas of the most relevant residues by using comparative genomics

and conversely one can make better sense of the variations observed in the

ribosome in different species in "tree of life" if one has some handle on the

functional robustness of the protein structure via direct calculations. Again,

this underscores that progress can be made by coupling highly targeted and

smaller scale computations with experimental information.

3.5 Conclusion

In the course of our study, we heard briefings from many different areas

of computational biology. It was clear that the area of molecular biophysics

is the most computationally sophisticated, the field in which computational

methods have become of age. In areas ranging from the computer-aided

analysis of advanced imaging methods to medium-scale solution of model

equations to full-up simulations of the equations of motions for all the atoms

using high performance computing assets, this field is moving forward and

making impressive gains. So, there is every reason to continue work on

the challenges facing this field. As we heard from our briefers and as we

thought through the issues among ourselves, our primary question related

to computation was one of investment strategy. Simply put, what mix of

computational resources provides the best fit to today's research community

and conversely, how would investment in high performance computing impact

the progress to be made in the future?

Our basic conclusion is that an effective model for computational re-

source needs is an approach currently adopted by Klaus Schulten (Univ.

Illinois) of attempting to provide a cluster per graduate student. In his lab,
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each student is given complete control of a commodity cluster (roughly 50

processors) for his/her research. Similarly, we heard from Dr. Chiu that

clusters of this scale are the right tool for current imaging applications. The

logic behind this is that

"* there are many important problems to be worked on, not a single unique

challenge (contrast this to QCD, for example).

" almost all problems require significant computation. There is a sort of

"minimum complexity principle" at work., which means that even the

simplest biologically meaningful systems are much more complex than

most physicists care to admit. This tips the balance of simple soluble

models/intermediate models requiring some simulation/detailed mod-

els requiring significant computation to the right of what is standard

in most basic physics areas. A single workstation is clearly inadequate.

" We are far away from any very specific "threshold" of understanding.

Our understanding of specific systems will continue to increase incre-

mentally and no one set of "super-calculations" doable in the foresee-

able future will have a first order effect on the field. Thus, there is

limited utility in providing a very small number of researchers access

to more computational cycles in the form of a HPC capability machine

- this type of machine would be effectively utilized, but would probably

not lead to breakthrough results.

" Conversely, there could be breakthroughs based either on algorithmic

improvements or conceptual advances. One might argue, for example,

that the idea of a "funneled landscape" (discussed above in 3.3) has led

to useful simplified models and indeed to constraints on "realistic mod-

els" which have enhanced our ability to predict protein structure. New

ideas for electrostatic calculations might fit into this category. These

algorithms and/or ideas will only come from having many researchers

trying many things, another argument for capacity over capability.
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We comment here at this point on the deployment of software. We

were struck by the fact that this community is quite advanced when it

came to developing and maintaining useful software packages which can then

be shared worldwide. These packages include codes which provide force

fields (CHARMM, AMBER), those which do quantum chemistry calcula-

tions (NWCHEM, for example), those which organize molecular dynamics

calculation for cluster computing (e.g. NAMD) and those which do image

analysis (HELIX-FINDER for Cryo-EM data, for example). These packages

are all research-group based and hence can both incorporate new ideas as

they emerge in the community and remain usable by new scientists as they

become trained in the field. There are organized community efforts to train

new users, such as summer schools in computational methods in biophysics

being run at various universities, for example. Alternative approaches to

software development such as having a group of software developers work in

relative isolation on a set of modules that a limited set of people have for-

mulated at some fixed time-point is not appropriate in our view for a rapidly

advancing, highly distributed yet organized, research community.

After repeated badgering of our briefers and after repeated attempts

to look through the computational molecular biophysics literature, no truly

compelling case emerged for HPC as deployed, for example, by the NNSA

ASC program. The difficulties are the mismatch between scales at which we

can be reasonably confident of the fundamental interactions (here atoms and

electrons, at scales of angstroms and femtoseconds) and scales at which we

want to understand biomolecular structure and function (tens to hundreds of

nanometers, milliseconds and longer). This means that large scale ab initio

simulations are most likely not going to dominate the field and that it will

be difficult for massive capability platforms to make a huge difference.

Instead, we recommend vigorously supporting research in this area with

something like the current mix of computation resources. There needs to be

a continuing investment in algorithms and in machine architecture issues so

that we can overcome the "serial bottleneck" and can seamlessly accomplish
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multi-scale modeling, as informed by the scientific need. The digital ribosome

is not feasible today as a computation grand challenge, but is sufficiently close

to deserve further scrutiny as our understanding improves.
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4 GENOMICS

In this section we provide some perspectives on the role of HPC in ge-

nomics. We conclude this section with an assessment of a potential grand

challenge that connects developments in genome sequencing with phyloge-

netic analysis: determination of the genome of the last common ancestor of

placental mammals.

4.1 Sequence Data Collection

Presently, raw DNA sequence information is deposited in an interna-

tional trace archive database managed by US National Center for Biotech-

nology Information. Each "trace" or "read" represents about 500-800 bases

of DNA [31]. Most reads are produced by "shotgun" sequencing, in which

the genome of interest is randomly fragmented into pieces of a few thousand

bases each, and the DNA sequence at the ends of these pieces is read. The

Joint Genome Institute (JGI) at DOE is one of the top four producers of DNA

reads in the world. The other three are NIH funded labs. JGI contributed

roughly 20 million DNA traces in the three months ending July 2004, which

is about 25% of the worldwide production that quarter. The cumulative to-

tal JGI contribution to the trace archive as of July 2004 was approximately

46 million traces, representing about 10% of total worldwide contributions.

Approximately 80% of the DNA in the trace archive was generated by the

top four labs.

Beyond its great biomedical importance, extensive DNA sequencing has

the potential to give us significantly greater depth in understanding the bio-

diversity on this planet and how it has evolved. In addition to sequencing

the (nearly) complete genomes of hundreds of individual species, the shotgun
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sequencing methods have been applied to the analysis of environment sam-

ples, where genome fragments from a complex mixture of species living in a

given ecosystem are all obtained at once from a single experiment [42, 41].

It is anticipated that in the near future these methods will generate signifi-

cant amounts of genome data from organisms very broadly distributed over

the tree of life. Data from environmental sequencing efforts could be used

to identify new species and new members of gene families, with potential

applications in medicine, ecology and other areas.

Venter et al. [42] report obtaining more then 1 million new protein

sequences from at least 1800 prokaryotic species in a single sample from

the Sargasso Sea. The method is remarkably successful for species that are

abundant in the sample and exhibit little polymorphism, i.e. DNA differences

between individuals.

The polymorphism issue is an important one. In the Sargasso Sea study,

some species had as little as 1 single nucleotide polymorphism (SNP) in

10,000 bases. A length-weighted average of 3.6 SNPs per 1000 bases was

obtained for all species from which they could assemble genomic DNA into

large contiguous regions ("contigs"). A relatively low SNP rate such as this

is necessary if one is to reliably assemble individual reads into larger contigs

without crossing species or getting confused by near duplicated sequence

within a single species. Larger contigs are useful for many types of analysis.

It is unclear how many species are not analyzable in an environmental sample

of this type because of high polymorphism rates. Polymorphism rates as high

as 5 SNPs per 100 bases can occur in neutrally evolving sites in eukaryotes

such as the sea urchin (Eric Davidson, personal communication). Such a

high rate of polymorphism makes it difficult to correctly assemble contigs

across neutral regions even in a pure diploid sample from a single eukaryotic

individual. The situation is much worse in an environmental sample. Still,

there is some hope of assembling somewhat larger contigs in regions that

are protein coding or produce structural RNA if strong purifying selection

within the species is constraining the DNA sufficiently (e.g. in ribosomal
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Figure 4-10: A depiction of the tree of life indicating the complications caused
by reticulated evolution.

RNA genes, which are typically used to identify species). Because there

will nearly always be some neutral polymorphic sites intermingled with the

constrained sites, better, more "protein-aware" or "RNA-aware" mnethods of

sequence assembly will be needed to fully exploit environmental sequence

data by producing the largest possible contigs.

There is significant synergy with the DOE sequencing programis and

the NSF "Tree of Life" initiative, whose goal is to catalog and sort out

the phylogenetic relationships among the species present on our planet. This

project is even harder than one might expect, because contrary to the original

picture of Darwin, it is clear that species relationships are coniplicated by
reticulated evolution, in which DNA is passed horizontally between species,

creating a phlyogenetic network instead of a simple tree (see Figure 4-10).

While rare in animals, this is especially prevalent in the bactcrial kingdom,

an area where DOE has significant opportunity in light of NIH's focus on

metazoan genomes and NSF's focus on plant genomes. Significant se(qucncing

of bacterial genomes is neexled to sort this issue out. Simple analysis based on
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seqtuencing of a few common finctional elements from each species' genoine,

such as the ribosomal RNA genes, will not suffice.

4.2 Computational Challenges

There are a number of comiputational challenges related to the efforts

described in the previous section.

4.2.1 DNA read overlap recognition and genome assembly

As discussed above, individual DNA reads must be assemlbled into larger

genome regions by recognizing overlaps and utilizing various kinds of addi-

tional constraints. This has been challenging even for DNA reads from a sin-

gle species. In environmuental sequencing, this must be done without mixing

DNA from different species. As mentioned above, sparse samnpling of DNA

froin many species in the more coimplex environniental samples, coutlled with

high rates of polymorphism within specific species presents a significant ob-

stacle here.

4.2.2 Phylogenetic tree reconstruction

There have t)bmniJ potentially significant algorithmic advances for recon-

structing phylogenetic trees, including recta-muethods for improving the per-

formance of current algorithms. But the data sets on which this developmient

can take place are still limited and there does not yet seem to be sufficient

understanding the nature of real world problemns to create useful synthetic

data sets. The current assessment is that reconstructing large phyloggenetic
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trees will require potentially large parallel machines at some point in the

future and further the more efficient algorithms may require more conven-

tional supercomputer architectures. One should monitor the developments

here closely over the next two or three years. More specific challenges in-

clude finding improved techniques for the major hard optimization problems

(maximum parsimony and maximum likelihood) in conventional phylogenetic

inference, as well as dealing with higher level analysis of whole genome evolu-

tion, with insertions, deletions, duplications, rearrangements and horizontal

transfer of DNA segments.

4.2.3 Cross-species genome comparisons

Orthologous genomic regions from different species must be detected and

aligned in order to fully identify functional genomic elements (protein-coding

exons, non-coding RNA sequences, and regulatory sequences) and to study

their evolution from a common ancestor. In evolutionarily close species, e.g.

for the human and mouse genomes, genomic alignment and comparison can

be done solely at the DNA level, although further analysis of the robustness of

these alignments is warranted. As an example of the computational capacity

required to do this, running on the 1000 CPU commodity hardware cluster

at David Haussler's laboratory at UCSC, it takes Webb Miller's BLASTZ

program 5 hours to compare and align the human and mouse genomes. Note

that the requirements here are for capacity. Typically, these computations

are "embarrassingly parallel".

In more distant species comparisons, e.g. human to fly, too much noise

has been introduced by DNA changes to reliably recognize orthologous DNA

segments by direct matching of DNA sequences. In this case it is common

to first identify the protein coding regions in each species' DNA and then

compare these as amino acid sequences, which exhibit many fewer changes

than does the underlying DNA due to the redundancy of the genetic code.

In principle, these protein level alignments could be projected back onto the
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DNA sequences and even extended some (perhaps short) distance into the

nearby non-coding DNA. This would be a useful algorithmic and software

development. Production of alignments anchored off conserved non-coding

elements, such as non-coding RNA genes would also be of great value. This

presents a significant computational challenge and depends greatly on obtain-

ing a better understanding of the molecular evolution of some of the various

classes of functional non-coding genomic elements. Finally, in species with

introns, which includes virtually all multicellular organisms, the identifica-

tion of protein coding genes is significantly more complicated, and it appears

that combined methods of comparative alignment and exon detection are

needed [27]. an area of active research. At present, code developed in Haus-

sler's lab using phylogenetic extensions of hidden Markov models is used to

identify likely protein coding regions. It takes days to run on the human,

mouse and rat genomes on their 1000 CPU cluster. Again, the challenge here

is to deploy sufficient capacity.

4.2.4 Data Integration

To give genome sequences maximum utility, other types of biomolecular

data must be mapped onto them, and made available in a common database.

These types of data include cDNA sequences (a more direct window into the

RNA sequences made by the species), gene expression levels under various

conditions, evidence of protein-DNA interactions at specific sites (e.g. ChIP-

chip data), etc. Web-based, interactive distribution of these data provides an

opportunity to reach a large research audience, including labs less proficient

in software development. This need for data federation and searchability

appears in several other contexts in this report.
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4.3 A Potential Grand Challenge - Ur-Shrew

An example of a grand challenge in computational genomics would be

the reconstruction of the genome of the common ancestor of most placental

mammals, a shrew-like animal that lived more than 75 million years ago.

The idea would be to infer the DNA sequence of this ancestral species from

the genomes of living mammals. This challenge involves a number of the

areas mentioned above, including genome sequence assembly, whole genome

sequence alignment and comparison, and inference of phylogenetic relation-

ships from sequence, as well as areas not discussed, such as the detailed

inference of specific molecular changes in the course of evolution. Recent

work by Blanchette, Miller, Green and Haussler has indicated that with

complete genomes for 20 well-chosen living placental mammals, it is likely

that at least 90% of an ancestral placental genome could be computationally

reconstructed with 98% accuracy at the DNA level [5]. Combined with the

identification of the functional elements in mammalian genomes, including

the protein-coding genes, RNA genes, and regulatory sequences, a recon-

structed ancestral genome would provide a powerful platform for the study

of mammalian evolution. In particular, it would allow us to identify the core

molecular features that are common to and conserved in placental mammals,

as well as the features have evolved to define the separate lineages, including

the human lineage.

There are between 4000 and 5000 species of mammals currently identi-

fied, with the exact number still being the subject of debate. Mammals are

not the most speciose animal even among vertebrates, where several groups

have greater species counts according to present estimates; reptiles (- 7000

species), birds (-- 10' species) and fishes (- 2.5 . 104 species). Of course

numbers for various groups of invertebrates are much larger, such as molluscs

(_ 8 X 104 species) and insects (- 106 species). The more living descendant

species that are available, the more accurately one can reconstruct the ances-
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Figure 4-11: Base-level error rates in reconstruction of DNA from different

placental ancestors. These are estimated from simulations in [5]. The num-

bers in parentheses are fraction of incorrect bases not counting repetitive

DNA. Scale of branch lengths is in expected base substitutions per site. The

arrow indicates the Boreoeutherian ancestor.

tral genome. However, the number of living species is not the only relevant

parameter in determining how accurately one can reconstruct an ancestral

genome. The time (or more specifically, the time multiplied by evolutionary

rate) back to the common ancestor is very important, as is the topology of
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the phylogenetic tree. Better reconstructions are usually obtainable for col-

lections whose last common ancestor existed at a time just before a period of

rapid species diversification [5]. The rapid radiation of placental mammals

(3800 species), right after the extinction at the Cretaceous-Tertiary boundary

approximately 65 million years ago, makes a placental ancestor an attractive

candidate. The target ancestor would be one that lived some time before

this event, e.g. at the primate-rodent split, estimated at 70 million years

ago [12], or earlier. One attractive choice is the boreoeutherian ancestor [5],

a common ancestor of a clade that includes primates, rodents, artidactyls (in-

cluding, e.g. cows, sheep, whales and dolphins), carnivores and other groups,

which may have lived up to 100 million years ago (see Figure 4-11). In con-

trast, the last common ancestor of all mammals, including marsupials and

monotremes, is thought to date back to the Triassic Period (195-225 million

years) [12].

The Cretaceous-Tertiary extinction event is estimated to have killed

about 50% of all species. However, it was not as severe as the Permian-

Triassic extinction event of 252 million years ago, during which about 95%

of all marine species and 70% of all land species became extinct. This is

considered to be worst mass extinction on Earth so far. It would be an even

greater challenge to attempt reconstruction of an ancestral genome from this

time, but the magnitude of DNA change since this time is likely to be such

that much necessary information will have been irrevocably lost.

To test the accuracy of a reconstructed genome, it would desirable to ob-

tain actual DNA samples from ancestral species, hopefully from most major

subclades and ideally from the most ancient ancestors possible. There have

been claims made that DNA may be found in preserved ancient bacteria or

even in dinosaur bones, but these claims remain highly controversial at best.

The pre-fossil forests of Axel Heiberg Island in the Canadian Arctic yield

mummified samples of bark and wood from trees which date back over 48

million years. The samples are organic. The unusual environmental history

that created these samples could well have created samples of organic matter
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in similar stages of preservation from other organisms. However, whether any

useful DNA sequence data can be obtained from these remains open. On the

other hand, there is a credible claim by a team of Danish scientists for plant

and animal DNA dating between 300,000 and 400,000 years ago, obtained

from drilling cores collected in Siberia. However, others have argued that

no reliable DNA can be obtained from remains more than 50-100 thousand

years old [4, 25]. Given that the most recent evolutionary branch point with

a living species related to humans, namely the chimpanzee, occurred more

than 5 million years ago, this means that options for testing the accuracy

of the computationally reconstructed genome sequence of a species ancestral

to us by recovering a sample of that or a closely related species' DNA are

limited.

Another approach to experimentally validating the ancestral sequence

would be to synthesize individual genes from it, clone them into a mouse

model, and test their activity in vivo. This will require advances in DNA

synthesis technology, but is not out of the question. However, such a test

could never prove that the reconstructed gene was correct, only that it is

functional. Further, there may be problems due to the fact that the other

genes, including those that have close interactions with the reconstructed

ancestral gene, would still be murine genes. Nevertheless, the information

gained from such tests would be useful.

Our conclusion is that the "Ur-Shrew" grand challenge may be one that

is worthwhile and could be pursued quite soon. Assuming that NIH's plans

to sequence a broad sampling of placental mammals are carried out, and the

estimates from [5] hold up, the data required to get a reasonably useful recon-

structed ancestral placental mammalian genome will soon be available. The

most pressing need will then be for more powerful computational compara-

tive genomics and phylogenetic analysis methods, as discussed in the sections

above. The HPC requirements for this project seem to be for increased com-

putational capacity, not computational capability. In other words, if this

project, or a related project with species sequenced by DOE were to be
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undertaken, DOE should encourage the acquisition and use of commodity

clusters, either by individual labs or as part of a national facility. This holds

for many other challenges one might consider in the areas of genomics as

well.
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5 NEUROSCIENCE

5.1 Introduction

The field of neuroscience encompasses a large number of scales of in-

terest. This is illustrated in Figure 5-12 as described to us by briefer T.

Sejnowski. The figure displays a length scale hierarchy starting at the most

basic level with the molecules that form neural synapses. At the next level

of organization are neurons. One can then formulate higher levels of orga-

nization composed of networks of neurons which then map to regions of the

brain. Ultimately, the goal is to understand how all these interacting scales

come together to dictate the behavior of the central nervous system. Contri-

butions to computational neurobiology occur at every level of this hierarchy.

Given the breadth of the area, it is impossible to cover throughly the field

in this report. Instead, we describe here briefly several aspects of computa-

tional neuroscience as briefed to us by Mayank Mehta, Terrence Sejnowski,

and Garret Kenyon. Each of these briefings raise important issues relative to

requirements for high performance computation. We close this section with a

discussion of a potential grand challenge in computational neuroscience that

attempts to model the retina.

A central issue raised in the briefing of Terry Sejnowski is the un-

derstanding of the mechanisms by which signaling takes place within the

synapses connecting neurons. Neurons communicate through firing events

between synapses. These firing events represent the release of various chem-

ical transmitters which then activate a target neuron. The transmitters can

also dynamically alter the operating characteristics of the signaling machin-

ery itself. It is through this dynamic mechanism that various brain functions

such as memory are accomplished. For example, in the formation of new
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Figure 5-12: The neural hierarchy (from the briefing of Dr. T. Sejnowski.

memories it is thought that various synapses among the associated neurons

are strengthened through this dynamic mechanism so as to encode the new

memory for later retrieval. This dynamic updating of synaptic strength is

referred to as "synaptic plasticity". Sejnowski described in his briefing re-

cent work by Mary Kennedy and her coworkers on a complex of signaling

proteins called the post-synaptic density which is located underneath exci-

tatory receptors in the central nervous system. Kennedy's group has used a

variety of techniques to elucidate the structure of these proteins and is now

examining the interaction among these proteins in controlling transmission

in the synapse and in effecting the phenomenon of plasticity. Some of the

identified proteins are shown in figure 5-13. Sejnowski argues that such com-
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Figure 5-13: Signaling proteins in the Post synaptic density. The figure
is taken from work of Prof. Mary Kennedy as briefed to us by Prof. T.
Sejnowski.

plex dynamics cannot be adequately modeled via a classical reaction-diffusion
based miodel of the reaction dynamics. Instead it beconies necessary to take

into account the complex geometry and the stochastic fluctuations of the

various biochemical processes. In this approach, diffusion is modeled via a

Monte Carlo approach applied to the individual molecules that participate

in the biochemical reactions. Reactions are also treated stochastically using

a binding rate. As the random walk proceeds, only molecules that are in

close proximity will react and then only if the binding rates are favorable.

The contention is that this flexibility in the ability to prescribe the general

in-vivo geometry and the more detailed approach to the reaction dynamlics

is essential to properly describing the reaction dynanlics. Kennedy and her

group are able to provide estimates to the Sejnowski group of the average

numbers of each niolecule that is present as well as anatomical data of vari-

ous neurons in portions of the brain. The computational requirements here

certainly require high performance computation and the Sejnowski group has

developed the MCell program as a tool to numerically performn the required

stochastic simulation in a prescribed geonietry of interest. There is great

value in such studies as they can either point the way to obtaining better
"coiitinuuni muodels" of plasticity or can help in the dlevelopmnenit of niore so-

phisticated synaptic modeling strategies. It should be pointed out, however,
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Figure 5-14: (a) Tetrode configuration to study in ilti-neuiron mneasurements

in rats. (b) Activation of various neurons as a function of the location of the

rat.

that this simulation is at the subcellular level and so the path to integrating

this detailed knowledge to the cellular level (or even beyond to the network

level) is unclear at present. Thus, while HPC is clearly helpful here, we

do not see that this approach could be the basis for large scale simulation

of neural processing which is presumably the ultimate goal. As in the case

of protein folding, some sort, of "mesoscopic" approach must be developed

(possibly with the assistance of tools like MCell). If such an approach can

be developed, then large scale computation of neural networks informed by

such modeling becomes possible and at this point a large investment in HPC

capability may well be required, at the present time, however, we see this

area as being better served by deployment of capacity platforms so that a

number of simulation approaches can be investigated.
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The phenomenology of synaptic plasticity can also be explored exper-

imentally and in this regard we were briefed by Prof. Mahank Mehta who

described the use of multi- neuron measurements t)y simultaneous recording

of EEG signals from over 100 neurons in freely-behaving rats over a period

of several months using tetrodes. An example of this approach is shown in

Figure 5-14. The benefit of this approach is that is it possible to understand

correlations among neurons as learning occurs. Mehta's results show that

the activity of various hipi)ocanipal neurons depend oni the rat's spatial loca-

tion, that is, that the rat tlnpptxanmpus apparently has "place cells" to help

it reason about its spatial location. The main implication for our study of

HPC is that such measurements require the ability to store, manipulate and

ultimately to reason about an enornious aniount of data. The neurophysics

comimunity has understood this and a number of Grid-based projects have

been initiated.

5.2 A Potential Grand Challenge - The Digital Retina

In this section we will consider the case for large scale simulation of tile

retina as a possible grand challenge in the area of neuroscience. As we will

argue, the retina in primates and other animals mneets the criteria for a grand

challenge quite well. As noted in the overview, to qualify for our category of

grand challenge a problem should have the following features:

"* A one decade time scale

"* Grand challenges cannot be open-ended

"* One must be able to see one's way, albeit murkily, to a solution.

"* Grand challenges nmust be expected to leave aii important legacy.

We begin by consi(dering ou1r understanding of the current state of knowl-
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Figure 5-15: Architecture of the retina from [24]. Cells in the retina are

arrayed in discrete layers. The photoreceptors are at the top of this rendering,

close to the pigmient epithelium. The bodies of horizontal cells and bipolar

cells compose the inner nuclear layer. Amnacrine cells lie close to ganglion cells

near the surface of the retina. Axon-to-dendrite neural connections make up

the plexiform layers separating rows of cell bodies.

e(dge as regards the retina. Our assessment is that the state of understanding

is rather well advanced. As explained article of Kolb [24], miiany of the de-

tailed cellular structures in the retina are well established. In the figure from

Kolb's article (Figure 5-15) we see the layer(ei structure of the retina which

takes light input to the rods (senses black and white) and cones (senses red,

green, and blue in primates) and through modulation through the bipolar

cells and ganglion cells transforms the input to spike trains propagated to

the brain along the optic nerve. There are roughly 130 million receptors and

1 million optic nerve fibers. Kol) notes that we can say we are halfway to
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the goal of understanding the neural interplay between all the nerve cells

in the retina. We interpret this as meaning that experimental scientists are

well along in collecting, collating, and fusing data about the structure and

interaction of the neurons in the retina.

The next step in our outline is also reasonably well established. There

seems to be general agreement about the structure of many retinas in various

animals, and there is the beginning of a web based documentation on retinal

genes and disorders: (see for example [21]). We could not find a database

of neural structures in various animals along with details about the electro-

physiology of the neurons in the circuits. So, this step in the development of

useful models requires further development. This aspect of the grand chal-

lenge certainly does not need high performance computing. A database in

this arena could be assembled consisting of experimentally observed spike

trains propagating along optical nerve fibers associated with some class of

agreed-upon test scenes presented to experimental animals.

We next address the issue of simulation. Here, one can find many mod-

els for a few photoreceptors and associated bipolar, horizontal, amacrine, and

ganglion cells, and even excellent work building small pieces of the retina in

silicon. The paper in [9] is a recent example of this. We have not found

any really large scale model of the retina in software or in hardware. If one

wishes to simulate the whole human retina with 125 million receptors and

associated processing neural circuitry leading to 1 million nerve fibers carry-

ing spike visual information trains down the optical fiber, then to represent

one minute of retinal activity with one hour of computing time one will need

approximately 7-10 TFlops. This resolves the behavior of realistic neurons

at a temporal resolution of 50 microseconds. The problem is eminently par-

allelizable as the computing units in the retina are similar in structure, not

in actual physical density. Equivalently, for model development and parame-

ter exploration, one could use the same computational power for a second

of retinal activity realized in one minute. This level of computing power is

commercially available today in a 1024 (dual processor) node IBM e1350.
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This is somewhat beyond conventional clusters found in many laboratories,

but requires no specialized computer development. Delivery of a 128 node

1.1 TFlop system was taken recently by NCAR and performance at the level

of 7-10 TFlops has been achieved by several groups including the national

laboratories several years ago. At this stage there is nothing we can say about

prediction and design, though recent, work (see [9]) may provide a start in

this direction.

What is it that the DOE would need to do the develop the Retinal

Decade (the 10 year period for the Digital Retina grand challenge)? The key

ingredients go well beyond the required computational facility which would be

achievable using present-day HPC resources. It would require an organization

with extensive experimentation, as emphasized in the outline of a grand

challenge in life sciences, that is well-coupled to the numerical modeling.

The JGI is perhaps a model for this in that the sequencing machines were

a critical part of the story but not the only critical part. The organization,

training, well-defined goal setting, and a long term effort were critical.

It is appropriate to ask why one ought to consider the retina and not, for

example, the entire visual system or, even, the cortex? The latter systems are

simply not "ready for prime time" as a grand challenge in our view. Item one

on the list of grand challenge criteria is drastically incomplete; the knowledge

of the anatomy of the full visual system is reasonably known, though certainly

not as well as the retina alone, and the detailed electrophysiology needed to

make realistic models is absent. A similar situation holds for the cortex as a

whole, though even there the anatomy is not fully developed.

The retina is a processing system which dissects a visual scene and

transforms it into spike trains propagated along the optic nerve. If we can

understand, in simulation and predictive models, how this is done in detail

and through perturbations on that model why it is done the way nature does

it and what other variations on this theme might exist, we will have for the

first time fully characterized a neural circuit more complex than collections
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of tens to perhaps a few thousand neurons in invertebrate systems.

Further, we will have provided the basis for design principles for other

visual processing systems using the ingredients of the model system. Our

ability to go from the modeling, and reverse engineering of the retina, to

designing new systems using the principles discovered, would constitute an

important understanding of a critical circuit in ourselves. This would surely

have implications for treatment of disease which we do not attempt to draw

here. In addition, it would have equally important uses in the design of

optical sensing systems for robots useful in commercial and military environ-

ments.
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6 SYSTEMS BIOLOGY

In this section we review sonic of the work that was briefed to us on

systems biology. This is an important area now in its developmental stages.

Although systems biology means different things to different people, most

would agree that it concerns the functioning of systems with many comtpo-

nents. Practitioners of systems biology today are working primarily on sub-

cellular and cellular systems (as opposed to, say, ecological systems, which

are in themselves also very interesting biologically as well as from a systems

perspective). Articulated goals of this field include elucidating specific signal
transduction pathways and genetic circuits in the short term, and mapping

out a proposed circuit/wiring diagram of the cell in the longer term. The

essential idea is to provide a systematic understanding and modeling capabil-

ity for events depicted in Figure 6-16: when a cell interacts with Sonic. agent

such as a growth factor or a nutrient gradient, a complex series of signaling

events take place that ultimately lead to changes in gene expression which

in turn results in the cellular response to the stimulus. An example may be

the motion of a cellular flagellum as the cell adjusts its position in response

to the gradient.

The information leading to the reconstruction of the wiring diagram

that describes the cellular response programs includes

1. data from various high throughput technologies (e.g., DNA microarray,

CHiP-on-chip, proteoinics),

2. results from the vast literature of traditional experimental studies,

3. homology to related circuits/networks worked out for different organ-

isms.

The desired output of these approaches is a quantitative, predictive compu-
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Figure 6-16: Cellular signaling - figure fro)m presentation of Prof. Subra-
manian (UCSD).

tatijonal modlels connecting p~roperties of nioleciilar c'omplonenlts to cellular

lbehaviors. Given this scope, a large part of systems biology 1)eing lpractiu'ed

todlay is centered1 0n how to initegrate the vast aniount of thme h~eterogeneou)ls

input (lata to make computational modlels. W¥e were lbriefe(1l) by rof. Shankar

Subramanian who dlescrilbed the work of the Alliance• for Cellular Signaling.

This program aims to (determine quantitative relat ionships~ between inplu ts

andl outputs in cellular b)ehavior that vary tenmporally anid spatially. The

ultimate goal of this program is to understand how cells interpret signals iin

a ('ontext-delpendlent nmanner. One very implortant a~slect is organizing the

vast amount of data that arise in investigationis of celhlular signaling phenonm-

enia. As we comment later, q1uantifyinmg the function and~ topology of cellular

signaling networks is challenging. In order to assist with this goal, the Al-

liance has organize~l an enormous amount of (lata that can then he used l|y
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the community to test hypotheses on network structure and function. The

computational requirements here are dictated mainly by the need to store

and interrogate the data. We anticipate that over time there will be a need

to make this type of data centrally available to researchers so that it can be

easily obtained and assessed. This argues for a network-based information

infrastructure linking searchable databases. In our briefings we heard sev-

eral times about the need for such a facility - a "bioGoogle". Such a facility

would be a significant undertaking and would certainly require multi-agency

cooperation.

Other software development efforts include the M-Cell project (briefed

to us by Dr. Terry Sejnowski) which focuses oil modeling of neural synapses

and the Biospice program as briefed to us by Dr. Sri Kumar of DARPA/IPTO.

The goal of BioSpice is to provide a software platform to explore network

dynamics as inferred from high throughput gene expression data. The major

computational needs in these endeavors are

"* bioinformatic processing of the high throughput data

"* detailed stochastic simulation of network dynamics

There is little question that significant, HPC requirements emerge in this en-

deavor even for bacterial systems such as E. Coli. Experiments indicate that,

as the cell responds to a stimulus, the interconnection networks can become

quite complex leading to complex optimization problems as one attempts to

infer the network topology and system parameters from the data. If one then

couples a predictive network model with a spatially and temporally realistic

model of a cellular organism this will easily require HPC resources. Extrap-

olating in this way, the simulation requirements for multicellular organisms

are even more daunting.

This would imply a ready arena for significant investment in HPC. It

is, however, worthwhile to question the premise on which much of the above-
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mentioned program on systems biology is built upon. That is, that circuits

and networks are, in fact, appropriate system-level descriptors that will en-

able quantitative, predictive modeling of biological systems. We discuss this

in the section below and then close this section with discussion of a poten-

tial HPC grand challenge of simulating bacterial chemotaxis utilizing current

approaches to systems biology.

6.1 The Validity of the Circuit Approach

To be sure, a network-based perspective beyond the single-gene par-

adigm of traditional molecular biology is crucial for understanding biology

as a system. However, circuit diagrams are not necessarily the appropri-

ate replacement. To appreciate this issue, it is instructive to examine the

key ingredients that make circuit diagrams such a powerful descriptor for

engineered electrical/electronic systems, e.g., integrated circuits:

" Components of an integrated circuit, e.g., transistors, are functionally

simple. In digital circuits for example, a typical transistor (when prop-

erly biased) performs simple Boolean operations on one or two inputs.

Moreover, the physical characteristics of a component relevant to its

function can be summarized by a few numbers, e.g., the threshold volt-

age and gain. Thus, each component of a circuit can be quantitatively

described by a standard model with a few parameters.

" These components operate in a well-insulated environment such that

it is possible to specify only a few designated connections between the

components; this property allows a clear definition of the connectivity

of the component, i.e., the "circuit".

"* Complexity of an integrated circuit arises from the iterated cascades

of a large number of fast and similar components (e.g., 107 transistors
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switching at rates of typically a GHz). As the properties of the coni-

ponents are well characterized, the connectivity of these components is

the principle determinant of system function.

Even with the knowledge of a circuit diagram and the properties of

the comp)onents, a comp)lex circuit with various levels of feedback is

still difficult to model quantitatively ab initio because circuits with cy-

cles generally exhibit tinie-dependent behavior with unstable/unknown

outp)uts. The proper function of a complex circuit generally requires

its inputs to satisfy certain constraints. It is only with the knowledge

of these constraints and the intended functions of the system can a

complex circuit be understood and modeled quantitatively'

At present, it appears that few of the above features that make electronic

circuits amenable to quantitative modeling are available today for evolved

bio-molecular networks. We will illustrate the situation by examiining the

regulation of the lac operon [28], perhaps the best-characteri/ed molecular

control system in biology. The lac operon of E. coli encodes genes necessarily

for the transport and metabolism of lactose, a carbon source which E. coli

utilizes under the shortage of the default nutrient, glucose. The expression

of the lac operon is under the control of the Plac prorioter, whose aptparent

function is the activation of the operon in the presence of lactose, the "in-

ducer". This is achieved molecularly via a double-negative logic as illustrated

in Figure 6-17.

In the absence of the inducer, the transcripltion factor LacI binds strongly

to Plac and prevents the access of the RNA polynierase required for tran-

scription initiation. The inducer binds to LacI and drastically reduces its

affinity for the specific DNA sequences contained in Plac, thereby otpening

ump the promoter for transcription. The positive effect of lactose on the ex-

pression of the lac operon can be easily detected by modern DNA microarray
4 In this context, we were briefed by Prof. Shuki Bruck of Caltlech on po)ssible principles

for design of reliable circulit function even in the presence of feedback cycles. This work is
in an early state and is reflective of the need to tuderstand better biological "circuitry".
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Figure 6-17: Schematic of the lac operon and its control by Lacd andl the

inducer lactose.

experiments [47]. With some work, it is likely that the binding of LacI to

Plac and its repressive effect on gene expression can also be discovered by

high throughput approaches such as the ChIP-on-chip method [34]. Thus,

the qualitative control scheme of Figure 6-17 is "discoverable" by bioinfor-

niatics analysis of high-throughlput data. However, this information is far

short of what is needed to understand the actual effect of lactose on the lac

operon, nor is it sufficient to understand how the LacI-Plac system can be

used in the context of large genetic circuits. We list below some of the key

issues:

Difficulty in obtaining the relevant connectivity A key ingredient of

the control of Plac by lactose is the fact that lactose cannot freely

diffuse across the cell memlbrane. The influx of lactose requires the

memb)rane protein lactose perniease which is encoded by one of the

genes in the lac operon [29]. Hence there is a positive feedback loop in

the lactose-control circuit (cf. Figure 6-18). A small amiount of lactose

leaking into the cell (dic to a basal level of the lac t)erniease will, in

the presence of glucose shortage, turn on the lac operon which results

in the inffusion of more lactose. The positive feedback, coupled with a

strongly nonlinear dependence of the promoter activity on intracelliilar

lactose concentration, gives rise to a bistable behavior where individuial

cells switch abrilptly between states with low and high promoter ac-

tivities [32]. However, the onset of the abrupt transition is dependent

on stochastic events at the transcrip)tional and translational level [43],
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Figure 6-18: Influx of lactose requires the lac permease encoded by lacY

so that at the popuilation level, one finds instead a gradual increase of

gene expression iipon increase in extracellular lactose levels [22]. It is

unclear how this positive feedback loop could have been determinied by

automated methods. It would rqtuire the knowledge of the intracellu-

lar lactose concentration and of the function(s) of the genes in the lac

operon, which in turn reqjuire detailed biochemistry and genetics exper-

iments. Without appreciating these issues, blindly fitting the smooth

pop)ulation-averaged behaviors to simple models of transcriptional ini-
tiation certainly will not generate reliable, predictive results. It should

be noted that the finction of the gene lacA in the lac operon is still not

clear even today, and other mechanisms exist to change the intracellu-

lar lactose concentration (e.g., other diffusible inducers and the lactose
efliux pump). Thus, fuirther feedback control may well exist and the

above circuit may still be incomplete.

Difficulty in reliable quantitation There are also problems with the char-

acterization of the Plac promoter independent of the lactose transport

problem. The gratuitous inducer isopropyl-b-D-thiogalactopyranoxside
(IPTG) can diffuse freely across cell membrane and bind to Lacd,

thereby activating transcription. The IPTG dependence of Plac ac-

tivity has been studied by many groups. However, the results vary
widely. For instance, reported values of fold-activation between no

IPTG and imNM IPTG can range from several tens to several thou-
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sands (see e.g., [37, 32, 47, 30]) on the same wild-type strain, and even

more varied outcomes are obtained for different strains, under differ-

ent (glucose-free) growth media, for different inducers and reporters.

Biologists are usually aware of these differences, and the quantitative

fold-changes are typically not taken seriously except that the promoter

is "strongly activated" by the inducer. Thus, the, problem of (juan-

titation is not simply a "cultural issue" - that is, that biologists are

not sufficiently quantitative. Rather, it is the complexity of the sys-

tem that often makes reliable quantitation difficult. Also illustrated

in this example is the danger of extracting quantitative results using

automated literature search tools. Given the sensitive dependence of

the systems on the details of the experiments, it is crucial to obtain the

precise context of an experiment.

Difficulty in predicting function of a given circuit While dissecting real

gene circuits in viPJo is complicated by all sorts of unknown interamtions,

it is possible to set up artificial gene circuits and study their proper-

ties in vivo [19]. Given that the synthetic systems are constructed

with reasonably well-characterized components which have clearly des-

ignated connections, they become a natural testing ground for quanti-

tative computational modeling. A successful experiment in synthetic

biology typically begins with a theoretically motivated circuit topol-

ogy. It then takes several rounds of tweaking to make the construct

behave in the designed manner. This is of course a standard practice

for engineering of any man-made systems. However, the process also

underscores how the behavior of the system depends on details, such

that circuit topology is not a sufficient determinant of system proper-

ties. An explicit illustration of how the same circuit topology can give

rise to different system-level behaviors is the experiment of [18] ex-

amining circuits consisting of the same 3 repressors but connecte(l in a

variety of different ways. They looked for the ability of these circuits to

perform Boolean operations on two input variables (the concentrations

of two ligands IPTG and aTc). What they found was that the same
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Figure 6-19: An explicit illustration of how the same circuit topology can
give rise to different behaviors.

circuit topology can give rise to different logic functions (cf. Figure 6-

19). In fact, out of the 15 distinct promoter combinations possible for

their system, every circuit topology for which they made multiple real-

izations exhibited more than one type of behavior. Thus, the property

of a circuit depended not only on its topology, but also other details

that the circuit designers do not know about or over which they have

no control. Possible factors include the relative strengths of expression

and repression, leakiness of the different promoters, the turnover rates

of the different mRNA and proteins, the order of genes on the. plasinid,

etc. Given that the promoters and genes used in the experiment (LacI,

TetR, the ICI) are amiong the best characterized in molecular biology

and yet naive expectations are not always realized, we believe it will

generally be difficult to predict circuit properties based on connectivity

information alone.
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6.2 A Possible Grand Challenge: Bacterial Chemo-

taxis

With the above considerations we can consider the possible grand cial-

lenge of simulating a comIplex process such as bacterial chemotaxis. The

problem has a well defined set of inputs, namely, the concentration field iim-

pinging on a cell membrane. The desired prediction is the dynanic response

of the bacterial organisni as a function of time. As discussed above, high

throughput analysis has provided a wealth of data on the relevant molecular

biology as the cell encounters various inputs in the niedium.

However, as discussedt above, the critical issue is a predictive approach

to modeling cellular signaling. The cellular signaling process is at present

not satisfactorily modeled, in our opinion, via a "parts list" connected via a

discoverable network. The discussion of section 6.1 implies that additional

investigation is clearly required into the details of the chenmical networks that

govern cellular signaling making investment of HPC resources to support a

grand challenge in this area premature at the present time. There is no

question that such a study is science-driven and its success would leave a

clear legacy in the field. Indeed, once an appropriate modeling approach

is identified that deals correctly with the issues identified on the previous

section, a full spatially accurate model of the cell governed by all appropriate

cheniotaxis tioolel would certainly require HPC resources in order to track the

three dimensional response of the cellular system and its resulting dynamics

in the muedium.
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7 CONCLUSIONS AND RECOMMENDA-
TIONS

7.1 Introduction

In this section we provide a set of findings and conclusions for this study.

We begin with some general observations and impressions about biology and

the role of computation. First, biology is a data rich subject that poses

challenges to the creation of models. For example, experiments turn up sur-

prises all of the time and many zeroth order questions remain to be answered.

This was underscored in many of our briefings (particularly those on systems

biology). As a result, experiment remains the primary guide and informa-

tion resource. From the (admittedly limited) set of briefings we received, we

could not identify a situation in biology for which capability computation is

currently a key factor limiting progress.

For computational modeling to be successful, there must be a plausible

paradigm or model. For example, in particle physics, there is a long his-

tory of experimental and theoretical work leading up to universal agreement

that a particular non-Abelian gauge-theory Lagrangian was a useful model

to solve precisely and there was (and still is) extensive work to devise the

proper numerical discretization. This work was essential for the productive

application of large-scale computation. In almost all of the biology we heard

about, the paradigm did not seem to be sufficiently firm to warrant large

capability computational effort at this point.

Another principle is that the "right problem should be tackled at the

right time with the right tools." As noted above, immature paradigms are a

widespread feature at this point. But, in addition, supporting data are often
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lacking. For example, there is little doubt that neuronal interactions are the

basis of mammalian brains, but the details of synaptic interactions, plasticity,

etc. will be needed before large-scale modeling can be maximally productive.

We do note that some special subsystems like the retina may be ready for

large scale computation, but overall this fields remains driven by experiment

and data collection. Similarly, metabolic pathways alone are not sufficient for

systems-biology modeling; plausible values (or estimates) for reaction rates,

diffusion constants, etc. will be necessary. At the present time, the right set

of computational tools for the ongoing investigations appears to be at the

level of workstations or clusters as opposed to capability platforms. We do

note the potential importance of Grid computation.

We can generally identify a hierarchy of tasks to which computers and

computation can be applied.

Data collection, collation, fusion Because biology is a data-rich subject

with few mature paradigms, data are the touchstone for understand-

ing. These data take many forms, from databases of sequence and

structure to text literature. Further, the data are growing exponen-

tially, due in part to advances in technology (sequencing capability,

expression arrays, etc.) Collecting, organizing, fusing such data from

multiple sources and making them easily accessible both to the bench

researcher and the theoretician in a convenient format is an important

and non-trivial information-science task, although not within the realm

of traditional computational science.

Knowledge extraction The automated (or assisted) identification of pat-

terns in large datasets is another large-scale computational task. Ex-

amples include genomic sequence homologies, structural motifs in pro-

teins, and spike-train correlations in multi-electrode recordings. At

some level, this activity must be guided by paradigms.

Simulation Here, a physical model is typically used to embody experimen-
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tal knowledge. One obvious use to sufficiently encapsulate the existing

phenomenological information. But more important is the understand-

ing stemming from the construction and validation of the model.

Prediction With a validated model, one can make predictions. That is,

what is the response of the system when it is changed or subject to

external perturbation?

Design This is probably the highest level of computation. Here one investi-

gates deliberate perturbations and/or combinations of existing systems

to modify function. Validated models are essential at this level.

At present, our overall impression is that computation is playing an essential

role in the first two aspects and increasing roles in the third. Given this

emphasis, investments in capacity level and Grid-based computing seem most

appropriate at this time. As modeling and understanding improve we expect

to see much more utilization of computation to support simulation, prediction

and ultimately, design.

7.2 Findings

Role of computation: Computation plays an increasingly important role

in modern biology at all scales. High-performance computation is crit-

ical to progress in molecular biology and biochemistry. Combinator-

ial algorithms play a key role in the study of evolutionary dynamics.

Database technology is critical to progress in bioinformatics and is par-

ticularly important to the future exchange of data among researchers.

Finally, software frameworks such as BioSpice are important tools in

the exchange of simulation models among research groups.

Requirements for capability: Capability is presently not a key limiting

factor for any of the areas that were studied. In areas of molecular biol-
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ogy and biochemistry, which are inherently computationally intensive,

it is not apparent that substantial investment will accomplish much

more than an incremental improvement in our ability to simulate sys-

tems of biological relevance given the current state of algorithms and

architecture. Other areas, such as systems biology will eventually be

able to utilize capability computing, but the key issue there is our lack

of understanding of more fundamental aspects, such as the details of

cellular signaling processes.

Requirements for capacity: Our study did reveal a clear need for addi-

tional capacity. Many of the applications reviewed in this study (such

as image analysis, genome sequencing, etc.) utilize algorithms that

are essentially "embarrassingly parallel" algorithms and would profit

simply from the increased throughput that could be provided by com-

modity cluster architecture as well as possible further developments in

Grid technology.

Role of grand challenges: It is plausible (but not assured) that there exist

suitable grand challenge problems (as defined in section 2.3) that will

have significant impact on biology and that require high-performance

capability computing.

Future challenges: For many of the areas examined in this study, signif-

icant research challenges must be overcome in order to maximize the

potential of high-performance computation. Such challenges include

overcoming the complexity barriers in current biological modeling and

understanding the detailed dynamics of components of cellular signal-

ing networks.

7.3 Recommendations

JASON recommends that DOE consider four general areas in its evalu-

78



ation of potential future investment in high performance bio-computation:

1. Consider the use of grand challenge problems to make the case for

present and future investment in HPC capability. While some illus-

trative examples have been considered in this report, such challenges

should be formulated through direct engagement with (and prioritiza-

tion by) the bioscience community in areas such as (but not limited

to) molecular biology and biochemistry, computational genomics and

proteomics, computational neural systems, and systems or synthetic

biology. Such grand challenge problems can also be used as vehicles

to guide investment in focused algorithmic and architectural research,

both of which are essential to successful achievement of the grand chal-

lenge problems.

2. Investigate further investment in capacity computing. As stated above,

a number of critical areas can benefit immediately from investments in

capacity computing, as exemplified by today's cluster technology.

3. Investigate investment in development of a data federation infrastruc-

ture. Many of the "information intensive" endeavors reviewed here

can be aided through the development and curation of datasets utiliz-

ing community adopted data standards. Such applications are ideally

suited for Grid computing.

4. Most importantly, while it is not apparent that capability computing

is, at present, a limiting factor for biology, we do not view this situ-

ation as static and, for this reason, it is important that the situation

be revisited in approximately three years in order to reassess the po-

tential for further investments in capability. Ideally these investments

would be guided through the delineation of grand challenge problems

as prioritized by the biological research community.
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A APPENDIX: Briefers

Briefer I Affiliation ] Briefing title
David Haussler UC Santa Cruz Genomes primer
Mayank Mehta Brown University Neurophysics of learning
Terry Sejnowski Salk Institute Modeling mesoscopic biology
John Doyle Caltech Systems biology
Garrett Kenyon Los Alamos Nat'l Lab Computational neuroscience
Mike Colvin Livermore and UC Merced Molecular dynamics
Eric Jakobsson NIH The BISTI Initiative
Shankar Subramanian UCSD Alliance for cell signaling
David Dixon Univ. Alabama Computational biochemistry
Wah Chiu Baylor Univ. Imaging and crystallography
Dan Rohksar Lawrence Berkeley Lab Sequencing of Ciona
Peter Wolynes UCSD Protein folding
Steve Mayo Caltech Protein structure and design
Jehoshua Bruck Caltech Biological circuits
John Wooley UCSD Advanced computation for biology
Nathan Baker Washington Univ. Multiscale modeling of biological systems
Klaus Schulten Univ. Illiois Theoretical molecular biophysics
Sri Kumar DARPA DARPA Biocomputation
Tandy Warnow Univ. Texas (Austin) Assembling the tree of life
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